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We have continued our investigations of low velocity collisions of ice particles

for velocities in the range 10 -3 cm/s < v < 2 cm/s. Our work this year focused

on two efforts: 1) the sticking forces for ice particles coated with CO2 frost, and

2) the completion of a 2-D pendulum system for glancing collisions. In

addition, we revised our first paper on the sticking properties of water frost

coated particles. This paper, published in 1991 has received considerable

attention. The measured sticking forces for water frosts are of order 100 dynes.

This is large enough to hold composite particles together in the tidal

gravitational forces of Saturn, for clusters up to ~ 10m in size. The fact that

water frost provides a significant sticking force at low temperatures (100°K)

provides a mechanism for the formation of larger particles via aggregation.

We find that uncompacted frosts, for impact velocities in the range 0.2 mm/s -

0.8 mm/s give the largest sticking forces. Above a critical velocity (which

varies with the frost layer) no sticking occurs and the frost becomes compacted

after 8-10 collisions. At very low impact speeds, the particles will also stick but

the force needed to separate them (i.e. the sticking force) is considerably
smaller.

Our studies of sticking forces for CO2 frost on the surfaces indicate very similar

properties. The sticking forces are comparable, 2-20 dynes, and no sticking

occurs for velocities greater than ~ lmm/sec. This property may be a general

feature of frosts and not strongly dependent on the composite of the frost at

temperatures low enough that sublimation and/or melting are not important.

Future studies are planned to investigate this hypothesis.

The majority of our effort has been directed toward the 2-D pendulum. The

pendulum and control electronics are built and we have balanced it in a room

temperature set up. Both rotation axes have low loss, with Q's greater than 10

at a period of 15 sec have been achieved. Balancing for the vertical axis of

rotation is more difficult than the horizontal axis, and we are now developing

electronic sensors to simplify this process. We have also developed new

computer software to control and monitor the position of the 2-D pendulum.

We are now in the process of testing the pendulum and the computer control

system in a series of room temperature experiments. In Fig. 1 we plot the

vertical and horizontal position of a rubber super-ball attached to the 2-D

pendulum. For these tests, the ball bounced on a very rough surface

(sandpaper on a solid platform) to simulate a condition with a very large
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horizontal sliding friction force - a worst case situation. The pendulum

handles the resulting sideways torque well, although the damping for vertical

motion increased. At the collision indicated by the arrow, the change in the

magnitude of the vertical velocity component is small (~ 0.9) but the

horizontal component of velocity decreased by about a factor of 3. In collisions

on smooth surfaces with little friction, the change in horizontal speed can be

very small.
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Fig. 1. The horizontal and vertical components of the displacement of the ball
as a function of time. The arrow indicates the time of a collision.
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